CHROM. 16,565

GAS-LIQUID CHROMATOGRAPHIC ANALYSES

XXVI*. SEPARATION OF UNSATURATED ALCOHOLS AND THEIR ACE-TYL AND HALOACETYL DERIVATIVES ON CAPILLARY COLUMNS COATED WITH SE-30 AND OV-351

ILPO O. O. KORHONEN Department of Chemistry, University of Jyväskylä, Kyllikinkatu 1-3, SF-40100 Jyväskylä 10 (Finland) (Received January 6th, 1984)

SUMMARY

The gas chromatographic retention behaviour of seven unsaturated alcohols and the corresponding esters of acetic, mono-, di- and trichloroacetic and mono-, diand tribromoacetic acids on a low-polarity (SE-30) and a highly polar (OV-351) capillary column with temperature programming is reported. The relative retention data and the retention indices, with the retention index increments due to the methylene unit and the various halogen substituents, were determined. The retention order of the individual components in the mixtures is discussed, together with the influence of unsaturation and boiling point. The results are compared with those of earlier studies.

INTRODUCTION

The gas chromatography (GC) of unsaturated esters, particularly with unsaturation in the acyl chain, has been extensively studied with a wide range of non-polar and polar stationary phases^{1,2}, the effect of the position of unsaturation, chain branching and boiling point having been considered. However, few papers have appeared on the systematic GC of halogenated unsaturated esters, *i.e.*, methyl esters of chlorinated propenoic^{3,4} and 2-butenoic⁵ acids and C₃-C₆ unsaturated esters of monochlorinated propanoic and butanoic acids⁶.

This paper extends the earlier studies^{6,7} by showing the retention behaviour of seven C_3 - C_6 unsaturated alcohols and their acetyl and haloacetyl derivatives, containing one to three chlorine or bromine atoms. Analyses were carried out on SE-30 and OV-351 quartz capillary columns with temperature programming. The retentions relative to the alcohols, non-halogenated esters, *n*-tetradecane and the compounds on SE-30 are given and the elution order of the 56 individual components is discussed. The Kováts retention indices and the retention index increments were

* For Part XXV, see ref. 7.

determined and the effect of unsaturation and boiling point for the alcohols and the acetate esters is discussed. The results are compared with those of earlier observations^{1,6}.

EXPERIMENTAL

Materials and methods

The unsaturated alcohols (1-7) listed in Table I were commercial products⁶. The corresponding esters of acetic acid (8-14 = A1-A7), monochloroacetic acid (15-21 = MC11-MC17), dichloroacetic acid (22-28 = DC11-DC17), trichloroacetic acid (29-35 = TC11-TC17), monobromoacetic acid (36-42 = MBr1-MBr7), dibromoacetic acid (43-49 = DBr1-DBr7) and tribromoacetic acid (50-56 = TBr1-TBr7) were prepared from the corresponding alcohols and acid chlorides⁷ as described earlier⁸.

Commercial mixtures of the appropriate *n*-alkanes used were obtained from different sources.

GC was carried out on a Perkin-Elmer Sigma 3 instrument on SE-30 and OV-351 quartz capillary columns under the operating conditions reported previously^{7,9}, the retention data and the Kováts retention indices being determined as described earlier⁷.

RESULTS AND DISCUSSION

Figs. 1–4 show the chromatograms of two mixtures, one containing unsaturated alcohols and their acetyl and chloroacetyl derivatives and the other alcohols with their acetyl and bromoacetyl derivatives, separated on SE-30 and OV-351. The relative retention data of the compounds are presented in Table I, and the plots of the retention are shown in Figs. 5 and 6.

As is evident in Figs. 1 and 3, only one complete overlapping occurred on a non-polar column, *viz.*, *trans*-3-hexenyl acetate (13 = A6) with 3-butenyl mono-chloroacetate (17 = MCl3), together with some partially resolved peaks.

The highly polar OV-351 column gave very poor resolution for the components in the mixture of the chlorinated esters (Fig. 2), giving four complete overlappings, viz., 17 = MCl3 with 22 = DCl1, 31 = TCl3 with 25 = DCl4, 20 = MCl6 with 30 = TCl2 and 23 = DCl2 with 34 = TCl6. All fourteen brominated esters (36-49 = MBr1-MBr7 and DBr1-DBr7) analysed are, however, also resolvable on a polar column (Fig. 4).

It has been shown previously¹² that the retention behaviour of saturated esters on a non-polar stationary phase is closely related to the boiling points of the compounds and that with unsaturation a reduction in retention occurs, the reduction being accentuated in the presence of conjugation^{13,14}. On a polar column, however, increased retention with an unsaturated ester of similar boiling point relative to the saturated ester is observed¹⁴. These trends are evident in Table II, where the effects of unsaturation and boiling point for alcohols and acetate esters on both columns are shown.

As shown previously⁶, the alcohols are generally eluted on SE-30 in order of their boiling points, the only exceptions being 2-propyn-1-ol (2) and 4-penten-1-ol

Fig. 1. Chromatogram of a mixture of unsaturated alcohols (1-7) and the corresponding esters of acetic acid (8-14 = A1-A7) and chlorinated acetic acids (15-35, *i.e.*, MCl1-MCl7, DCl1-DCl7 and TCl1-TCl7), operated on an SE-30 quartz capillary column from 50°C at 6°C min⁻¹. S = Solvent; $C_{14} = n$ -tetradecane. Peaks identified in Table I.

(5). The reduction in the retention index due to the presence of the double bond is in the range 29-43 index units (i.u.). 2-Propen-1-ol (1) shows a decrease of 29 i.u., in spite of its similar boiling point to 1-propanol. The greatest reduction, 43 i.u., for 4-penten-2-ol (4) is due to the greatest deviation of the boiling points $(-5.4^{\circ}C)$. With 2, which has a boiling point over 16°C higher than that of 1-propanol, an increased retention might be expected. However, a decrease of 15 i.u. is found, and an increase of only 14 i.u. with respect to 2-propen-1-ol (1).

A completely different retention order for the alcohols on OV-351 is observed⁶, the increased retention due to the double bond being in the range 11-80 i.u. The lowest increase was detected for the branched-chain alcohol 4, whereas 1 showed the greatest increase. On the polar column the elution order is greatly influenced by the structures of the compounds given in Table III. This is clearly evident with 2-propyn-1-ol (2), showing an enhancement of 303 i.u. with respect to 1-propanol and 223 i.u. with respect to 2-propen-1-ol (1). The difference between the retention indices of 2 and 3-buten-1-ol (3) is 171 i.u., in spite of their similar boiling points (Table II).

The elution order of the acetate esters on SE-30 follows that of the corresponding alcohols, the reduction due to unsaturation being in the range 21–42 i.u. In contrast to the alcohols, the boiling points of the unsaturated acetate esters are higher than those of their saturated homologues (Table II), which might be expected to show a smaller reduction in retention than the unsaturated alcohols. With the esters

Fig. 2. Chromatogram of the same mixture as in Fig. 1, separated on an OV-351 quartz capillary column.

Fig. 3. Chromatogram of a mixture of unsaturated alcohols (1-7) and the corresponding esters of acetic acid (8-14 = A1-A7) and brominated acetic acids (36-56, *i.e.*, MBr1-MBr7, DBr1-DBr7 and MBr1-MBr7), operated on SE-30 from 50°C at 6°C min⁻¹. S = Solvent; $C_{14} = n$ -tetradecane. Peaks identified in Table I.

Fig. 4. Chromatogram of the same mixture as in Fig. 3, except for the tribromo isomers (50-56 = TBr1-TBr7), separated on OV-351.

8-10 and 12 (A1-A3 and A5), however, a larger reduction is detected.

n-Butyl and 1-methylbutyl acetates and 2-propynyl (9 = A2) and *n*-hexyl acetates are eluted on OV-351 in the opposite order to the corresponding alcohols. 3-Butenyl (10 = A3) and 1-methyl-3-butenyl (11 = A4) esters overlap, the alcohols (4 and 3) being separated (Figs. 2 and 4). As reported previously⁶, the corresponding higher, *i.e.*, propanoate and butanoate, esters are separated, 1-methyl-3-butenyl esters being eluted first. The enhancement due to unsaturation is in the range 35–258 i.u., being lower for the esters 8 = A1, 9 = A2 and 12 = A5 than for the corresponding alcohols 1, 2 and 5.

The previous work of Allen and Haken¹⁴ shows that with vinyl and ethyl esters a reduced retention is experienced with unsaturated esters on both non-polar and polar stationary phases (SE-30, OV-17, OV-25 and XE-60). An expected enhanced retention, with increasing polarity of the phase, was not observed and the reduction was little affected by the four stationary phases used. With the allyl (2-propenyl) esters, however, reduced retentions (-30 i.u.) on SE-30 and increased retentions (3-25 i.u.) on the more polar phases occurred¹⁴, the results being in good agreement with those of 2-propenyl acetate (8 = A1) given in Table II.

Previously, the retention behaviour of, *e.g.*, *trans-* and *cis-3*-hexenyl esters of lower (C_1-C_6) *n*-alkanoic acids on packed columns with several stationary phases was studied isothermally by Ashes and Haken¹, the effects of unsaturation and isomerism being considered. The retention indices reported for the *trans-* and *cis-*acetate esters¹ (13 and 14, *i.e.*, A6 and A7) and for *n*-hexyl acetate¹⁵ on SE-30 are 975, 978 and 988 i.u., respectively, giving deviations of -13 and -10 i.u. The corresponding retention indices on OV-225 are 1235, 1247 and 1229 (6 and 18) i.u., and on Silar

TABLE I

RETENTION DATA FOR UNSATURATED ALCOHOLS AND THE CORRESPONDING ALKYL ESTERS OF ACETIC ACID AND HALOGENATED ACETIC ACIDS, ANALYSED ON SE-30 AND OV-351

Conditions as in Figs. 1-4.

Peak No.	. Comp	puno	Column	I		ļ					
			SE-30				0V-351				
			ART*	RRT**	RR7***	RRT [§]	ART	RRT**	RRT***	RRT [§]	RRT ^{\$\$}
1	-	2-Propen-1-ol	2.94	0.14	1.00	0.69	5.01	0.44	1.00	1.24	1.70
7	7	2-Propyn-1-ol	3.06	0.14	1.00	0.69	9.41	0.83	1.00	1.31	3.08
e	ŝ	3-Buten-1-ol	3.62	0.17	1.00	0.63	5.95	0.52	1.00	1.16	1.64
4	4	4-Penten-2-ol	4.00	0.19	1.00	0.60	5.42	0.48	1.00	1.06	1.36
5	5	4-Penten-1-ol	5.10	0.24	1.00	0.63	8.48	0.74	1.00	1.21	1.66
9	9	trans-3-Hexen-1-ol	7.04	0.33	1.00	0.65	9.85	0.86	1.00	1.12	1.40
7	٢	cis-3-Hexen-1-ol	7.13	0.33	1.00	0.65	10.29	06.0	1.00	1.15	1.44
œ	A1	2-Propenvl acetate	4.24	0.20	1.44	1.00	4.05	0.36	0.81	1.00	0.96
6	A 2	2-Propynyl acetate	4.42	0.21	1.44	1.00	7.21	0.63	0.77	1.00	1.63
10	A 3	3-Butenyl acetate	5.76	0.27	1.59	1.00	5.11	0.45	0.86	1.00	0.89
11	A4	1-Methyl-3-butenyl acetate	6.68	0.31	1.67	1.00	5.11	0.45	0.94	1.00	0.76
12	A5	4-Pentenyl acetate	8.16	0.38	1.60	1.00	6.98	0.61	0.82	1.00	0.86
13	A 6	trans-3-Hexenyl acetate	10.89	0.51	1.55	1.00	8.79	0.77	0.89	1.00	0.81
14	A7	cis-3-Hexenyl acetate	10.95	0.51	1.54	1.00	8.95	0.79	0.87	1.00	0.82
15	MCII	2-Propenyl monochloroacetate	8.38	0.39	2.85	1.98	11.80	1.04	2.36	2.91	1.41
16	MCl2	2-Propynyl monochloroacetate	8.74	0.41	2.86	1.98	16.19	1.42	1.72	2.25	1.85
17	MCI3	3-Butenyl monochloroacetate	10.94	0.51	3.02	1.90	13.39	1.18	2.25	2.62	1.22
18	MCI4	1-Methyl-3-butenyl monochloroacetate	11.88	0.55	2.97	1.78	12.93	1.14	2.39	2.53	1.09
19	MCIS	4-Pentenyl monochloroacetate	13.70	0.64	2.69	1.68	15.51	1.36	1.83	2.22	1.13
20	MCI6	trans-3-Hexenyl monochloroacetate	16.36	0.76	2.32	1.50	17.02	1.49	1.73	1.94	1.04
21	MCI7	cis-3-Hexenyl monochloroacetate	16.50	0.77	2.31	1.51	17.30	1.52	1.68	1.93	1.05
22	DCII	2-Propenyl dichloroacetate	10.32	0.48	3.51	2.43	13.39	1.18	2.67	3.31	1.30
23	DCI2	2-Propynyl dichloroacetate	10.75	0.50	3.51	2.43	17.68	1.55	1.88	2.45	1.64
24	DCI3	3-Butenyl dichloroacetate	12.90	0.60	3.56	2.24	14.89	1.31	2.50	2.91	1.15
25	DCI4	1-Mcthyl-3-butenyl dichloroacetate	13.83	0.64	3.46	2.07	14.29	1.25	2.64	2.80	1.03
26	DCI5	4-Pentenvl dichloroacetate	15.62	0.72	3.06	16.1	16.75	1.47	1.98	2.40	1.07

334

27 28	DCI6 DCI7	trans-3-Hexenyl dichloroacetate cis-3-Hexenyl dichloroacetate	18.28 18.40	0.85 0.85	2.60 2.58	1.68 1.68	18.26 18.51	1.60 1.63	1.85 1.80	2.08 2.07	00.1
30 30	TCI1 TCI2	2-Propenyl trichloroacetate 2-Propynyl trichloroacetate	12.49 12.82	0.58 0.59	4.25 4.19	2.95 2.90	12.61 17.02	1.11 1.49	2.52 1.81	3.11 2.36	1.01 1.33
31	TCI3	3-Butenyl trichloroacetate	15.01	0.70	4.15	2.61	14.26	1.25	2.40	2.79	0.95
32	TCI4	1-Methyl-3-butenyl trichloroacetate	15.86	0.74	3.97	2.37	13.63	1.20	2.51	2.67	0.86
33	TCI5	4-Pentenyl trichloroacctate	17.61	0.82	3.45	2.16	16.09	1.41	1.90	2.31	16.0
34	TCI6	trans-3-Hexenyl trichloroacetate	20.17	0.94	2.87	1.85	17.70	1.55	1.80	2.01	0.88
35	TCI7	cis-3-Hexenyl trichloroacetate	20.29	0.94	2.85	1.85	17.99	1.58	1.75	2.01	0.89
36	MBrl	2-Propenyl monobromoacetate	10.26	0.48	3.49	2.42	13.70	1.20	2.73	3.38	1.34
37	MBr2	2-Propynyl monobromoacetate	10.66	0.49	3.48	2.41	17.89	1.57	06.1	2.48	1.68
38	MBr3	3-Butenyl monobromoacetate	12.84	09.0	3.55	2.23	15.29	1.34	2.57	2.99	1.19
39	MBr4	1-Methyl-3-butenyl monobromoacetate	13.81	0.64	3.45	2.07	14.85	1.30	2.74	2.91	1.08
4	MBr5	4-Pentenyl monobromoacetate	15.60	0.72	3.06	1.91	17.29	1.52	2.04	2.48	1.11
41	MBr6	trans-3-Hexenyl monobromoacetate	18.15	0.84	2.58	1.67	18.80	1.65	16.1	2.14	1.04
42	MBr7	cis-3-Hexenyl monobromoacetate	18.26	0.85	2.56	1.67	19.07	1.67	1.85	2.13	1.04
43	DBrl	2-Propenyl dibromoacetate	14.80	0.69	5.03	3.49	18.09	1.59	3.61	4.47	1.22
4	DBr2	2-Propynyl dibromoacetate	15.19	0.70	4.96	3.44	22.09	1.94	2.35	3.06	1.45
45	DBr3	3-Butenyl dibromoacetate	17.18	0.80	4.75	2.98	19.50	1.71	3.28	3.82	1.14
46	DBr4	1-Methyl-3-butenyl dibromoacetate	17.92	0.83	4.48	2.68	18.90	1.66	3.49	3.70	1.05
47	DBr5	4-Pentenyl dibromoacetate	19.74	0.92	3.87	2.42	21.38	1.88	2.52	3.06	1.08
48	DBr6	trans-3-Hexenyl dibromoacetate	22.20	1.03	3.15	2.04	22.79	2.00	2.31	2.59	1.03
49	DBr7	cis-3-Hexenyl dibromoacetate	22.32	1.04	3.13	2.04	23.09	2.03	2.24	2.58	1.03
50	TBrl	2-Propenyl tribromoacetate	19.51	06.0	6.64	4.60					
51	TBr2	2-Propynyl tribromoacetate	19.82	0.92	6.48	4.48					
52	TBr3	3-Butenyl tribromoacetate	21.70	1.01	5.99	3.77					
53	TBr4	1-Methyl-3-butenyl tribromoacetate	22.38	1.04	5.60	3.35					
2	TBr5	4-Pentenyl tribromoacetate	24.06	1.12	4.72	2.95					
55	TBr6	trans-3-Hexenyl tribromoacetate	26.30	1.22	3.74	2.42					
56	TBr7	cis-3-Hexenyl tribromoacetate	26.43	1.23	3.71	2.41					
C ₁₄		n-Tetradecane	21.56	1.00	ł	I	11.39	1.00	I	1	0.53
**	Absolute	e retention times (min) were measured from	t sample in	jection (Fig	gs. 1–4).						

GLC ANALYSES. XXVI.

335

*** Relative retention time for *n*-tetradecane (v_{14}) taken as 1.00. *** Relative retention time for the corresponding alcohol (1–7) taken as 1.00. § Relative retention time for the corresponding compound on SE-30 taken as 1.00. [§] Relative retention time for the corresponding acetate ester (8–14 = A1–A7) taken as 1.00.

Fig. 5. Plots showing the retentions of unsaturated alcohols (1-7, curve 1) and the corresponding esters of acetic acid (8-14 = A1-A7, curve 2), monochloroacetic acid (15-21 = MCl1-MCl7, curve 3), dichloroacetic acid (22-28 = DCl1-DCl7, curve 4), trichloroacetic acid (29-35 = TCl1-TCl7, curve 5), monobromoacetic acid (36-42 = MBr1-MBr7, curve 6), dibromoacetic acid (43-49 = DBr1-DBr7, curve 7) and tribromoacetic acid (50-56 = TBr1-TBr7, curve 8), analysed on SE-30 and OV-351. ART = Absolute retention time (min), measured from sample injection (Figs. 1-4 and Table I).

5CP, now available as APOLAR 5CP¹ 1313, 1330 and 1303 (10 and 27) i.u., the deviations being given in parentheses. Table II shows that the values obtained on an SE-30 capillary column with temperature programming are in accord with the earlier results^{1,15}. The retention indices on OV-351 are between those on OV-225 and APO-LAR 5CP. The disparities found are obviously due to the intermediate polarity of OV-351 with respect to the other phases, the retention index generally increasing with increasing column polarity. The deviations are greater on capillary columns (Table

Fig. 6. Plots showing retentions of the eight series as in Fig. 5 (curves 1-8). Relative retention time (RRT) for the unsaturated alcohols (1-7) taken as 1.00 (Table I).

II), but as previously shown¹, the magnitude of the deviations is not greatest for the most polar phase, as would be expected, but for the phase containing donor phenyl substituent groups, *i.e.*, for 100% phenyl.

Figs. 1 and 3 show that on SE-30 four alcohols (1-4) are eluted earlier than the first eluted acetate ester, *i.e.*, 2-propenyl acetate (8 = A1), although alcohol 4 has a boiling point about 13°C higher than that of 8. The increased retention of the esters on a non-polar column is evident in Figs. 5 and 6 and in Table II, the enhancements being in the range 126–160 i.u. A polar column (Figs. 2 and 4-6), however, shows a reduction from 17 to 105 i.u. in the retention of the esters (Table II), the effect being smallest with the branched-chain ester (11 = A4).

The retention indices of the eight homologous series studied, with the increments of the retention indices due to methylene units and halogen substituents, are presented in Tables IV and V, determined on SE-30 and OV-351, respectively.

The retention order of the halogenated esters on a non-polar column follows that of the non-halogenated acetate esters (Table IV). The isomers are eluted in the order monochloro < monobromo < dichloro < trichloro < dibromo < tribromo (Figs. 5 and 6), as expected, based on earlier work⁷. The unsaturated monobromo and dichloro isomers are, however, eluted closer together than the branched-chain esters⁷.

The 1-methyl-3-butenyl (series 4) and 3-butenyl (series 3) esters of the halo-

TABLE II

EFFECT OF UNSATURATION AND BOILING POINT OF ALCOHOLS AND ACETATE ESTERS ON SE-30 AND OV-351

Peak	Compound	Boiling	Colui	mn				
NO.		point (°C/mmHg)*	SE-3	0		OV-3	351	
			<i>I</i> **	Δ <i>I</i> ***	ΔI ^{\$}		<i>41</i> ***	<i>∆1</i> ^{\$}
1 2	1 2-Propen-1-ol 2 2-Propyn-1-ol 1-Propanol	97.16 113.6 97.15	532 546 561	-29 -15		1097 1320 1017	80 303	
3	3 3-Buten-1-ol 1-Butanol	113.5 117.25	609 646	-37		1149 1119	30	
4	4 4-Penten-2-ol 2-Pentanol	114.5 119.85	639 682	-43		1120 1109	11	
5	5 4-Penten-1-ol 1-Pentanol	139 137.9	717 746	- 29		1276 1216	60	
6 7	6 <i>trans</i> -3-Hexen-1-ol 7 <i>cis</i> -3-Hexen-1-ol 1-Hexanol	152–153.5 154–155 157.85	814 818 848	-34 -30		1340 1359 1318	22 41	
8 9	 A1 2-Propenyl acetate A2 2-Propynyl acetate <i>n</i>-Propyl acetate 	102-103 122.4-123.6 101.6	658 672 695	-37 -23	126 126 134	1014 1215 957	57 258	-83 -105 -60
10	A3 3-Butenyl acetate <i>n</i> -Butyl acetate	125–128 126.5	751 793	- 42	142 147	1103 1057	46	-46 -62
11	A4 1-Methyl-3-butenyl acetate 1-Methylbutyl acetate	138 133.5	799 828	- 29	160 146	1103 1068	35	-17 -41
12	A5 4-Pentenyl acetate n-Pentyl acetate	46-47/12 149.3	861 892	-31	144 146	1204 1152	52	72 64
13 14	A6 trans-3-Hexenyl acetate A7 cis-3-Hexenyl acetate n-Hexyl acetate	61/12 66/16 171.5	967 969 990	-23 -21	153 151 142	1291 1299 1248	43 51	49 60 70

* From refs. 10 and 11. Pressure 760 mmHg unless indicated otherwise.

** Values for *n*-alcohols and *n*-alkyl acetates are determined based on the data given in ref. 9, whereas values for 2-pentanol and 1-methylbutyl acetate are taken from ref. 7.

*** Deviation due to the unsaturation, i.e., IUnsaturated compound - Isaturated compound

 ${}^{\S} \Delta I = I_{\text{Ester}} - I_{\text{Alcohol}}$

genated acetic acids are resolvable on OV-351, their elution order corresponding to that obtained for the alcohols. The acetate esters 10 = A3 and 11 = A4 are coincident, however. The retention order obtained is monochloro < trichloro < dichloro < monobromo < dibromo (Figs. 5 and 6), the tribromo isomers showing no peaks on a polar column^{7,9}.

Series 1, 3 and 5 (Table III) permit consideration of the retention index increase for the methylene unit. As shown, on SE-30 (Table IV) the increments for the alcohols 3 and 5 are 77 and 108 i.u., respectively, and for 3-butenyl (series 3) and 4-pentenyl

TABLE III

STRUCTURES OF THE COMPOUNDS STUDIED

A: $R_1 = R_2 = R_3 = H$. MCI: $R_1 = R_2 = H$, $R_3 = CI$. DCI: $R_1 = H$, $R_2 = R_3 = CI$. TCI: $R_1 = R_2 = R_3 = CI$. MBr: $R_1 = R_2 = H$, $R_3 = Br$. DBr: $R_1 = H$, $R_2 = R_3 = Br$. TBr: $R_1 = R_2 = R_3 = Br$.

Structure	Ester $(R = CR_1R_2R_3CO)$	Series
R-0-CH ₂ -CH=CH ₂	2-Propenyl	1
$R-0-CH_2-C \equiv CH$	2-Propynyl	2
$R-0-CH_2-CH_2-CH=CH_2$	3-Butenyl	3
$R-0-CH-CH_2-CH=CH_2$ I CH_3	1-Methyl-3-butenyl	4
R-0-CH ₂ -CH ₂ -CH ₂ -CH=CH ₂	4-Pentenyl	5
$H = c = c \begin{pmatrix} CH_2 - CH_3 \\ H \end{pmatrix}$	trans-3-Hexenyl	6
$\overset{H}{\underset{R-0-CH_2-CH_2}{\longrightarrow}} c = c \overset{H}{\underset{CH_2-CH_3}{\longleftarrow}} c$	cis-3-Hexenyl	7
	Structure $R-0-CH_{2}-CH=CH_{2}$ $R-0-CH_{2}-C \equiv CH$ $R-0-CH_{2}-CH_{2}-CH=CH_{2}$ $R-0-CH_{2}-CH_{2}-CH=CH_{2}$ $R-0-CH_{2}-CH_{2}-CH=CH_{2}$ $R-0-CH_{2}-CH_{2}-CH_{2}-CH=CH_{2}$ $R-0-CH_{2}-CH_{2}-CH_{2}-CH=CH_{2}$ $H = C = C = C = C = H$ $R-0-CH_{2}-CH_{2} = C = C = C = C = C = CH_{2}$	StructureEster $(R = CR_1R_2R_3CO)$ $R-0-CH_2-CH=CH_2$ 2-Propenyl $R-0-CH_2-C=CH$ 2-Propynyl $R-0-CH_2-CH_2-CH=CH_2$ 3-Butenyl $R-0-CH_2-CH_2-CH=CH_2$ 1-Methyl-3-butenyl $R-0-CH_2-CH_2-CH=CH_2$ 1-Methyl-3-butenyl $R-0-CH_2-CH_2-CH_2-CH=CH_2$ 4-Pentenyl $R-0-CH_2-CH_2-CH_2-CH=CH_2$ 4-Pentenyl $R-0-CH_2-CH_2-CH_2-CH=CH_2$ trans-3-Hexenyl $R-0-CH_2-CH_2$ H cis-3-Hexenyl $R-0-CH_2-CH_2$ CH_2-CH_3 $R-0-CH_2-CH_2$ CH_2-CH_3

(series 5) esters in the ranges 93–99 and 103–110 i.u., respectively. On OV-351 (Table V) the corresponding increases are 52 for 3, 127 for 5, 72–89 for 3-butenyl esters and 91–110 i.u. for 4-pentenyl esters, the increments being considerably lower for the halogenated 3-butenyl esters than on SE-30.

By replacing the α -hydrogen atom in the 3 series with a methyl group, an enhancement of 31-36 i.u. on SE-30 and a reduction of 21-34 i.u. on OV-351 in the retention of the halogenated esters in the 4 series are observed. On SE-30 enhancements of 30 and 36 i.u. are observed for 4-penten-2-ol (4) and for the corresponding saturated alcohol, *i.e.*, 2-pentanol, respectively, the latter being determined based on the data given in Table II with respect to 1-butanol. On OV-351 the corresponding values are -29 and -10 i.u. (Tables V and II). SE-30 shows enhanced retentions of 48 i.u. for 1-methyl-3-butenyl acetate (11 = A4) and 35 i.u. for the corresponding saturated ester, the values on OV-351 being 0 and 11 i.u., respectively.

TABLE IV

RETENTION INDICES OF UNSATURATED ALCOHOLS AND CORRESPONDING ESTERS OF ACETIC ACID AND HALOGENATED ACETIC ACIDS AND INCREMENTS OF RETENTION INDICES FOR METHYLENE UNITS AND HALOGEN SUBSTITUENTS ON SE-30

Peak No.	Compound	Ι	∆I _{СН2} *	$\Delta I_{\alpha-CH_2}^{\star\star}$	$\Sigma \Delta I_X^{***}$	$\Delta I_{1x}^{\$}$	$\Delta I_{2x}^{\$}$	ΔI _{3x} §
1	1	532			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
2	2	546						
3	3	609	77	-				
4	4	639		30				
5	5	717	108					
6	6	814						
7	7	818						
8	Al	658	_					
9	A2	672						
10	A3	751	93	_				
11	A4	799		48				
12	A5	861	110					
13	A6	96 7						
14	A7	969						
15	MCII	870	_		212	212		
16	MCl2	885			213	213		
17	MCl3	969	99		218	218		
18	MCl4	1004		35	205	205		
19	MC15	1072	103		211	211		
20	MC16	1177			210	210		
21	MC17	1182			213	213		
22	DCl1	946	_		288	212	76	
23	DCl2	962			290	213	77	
24	DCl3	1042	96	_	291	218	73	
25	DCl4	1077		35	278	205	73	
26	DC15	1147	105		286	211	75	
27	DC16	1256			289	210	79	
28	DCl7	1261			292	213	79	
29	TCII	1027	_		369	212	76	81
30	TCl2	1039			367	213	77	77
31	TCl3	1122	95	_	371	218	73	80
32	TCl4	1157		35	358	205	73	80
33	TC15	1228	106		367	211	75	81
34	TCl6	1337			370	210	79	81
35	TC17	1342			373	213	79	81
36	MBr1	943	_		285	285		
37	MBr2	958			286	286		
38	MBr3	1040	97	_	289	289		
39	MBr4	1076		36	277	277		
40	MBr5	1146	106		285	285		
41	MBr6	1251			284	284		
42	MBr7	1255			286	286		

Conditions as in Figs. 1 and 3.

TABLE IV (continued)

Peak No.	Compound	Ι	<i>∆І</i> _{сн2} *	$\Delta I_{\alpha-CH_2}^{\star\star}$	ΣΔΙ _X ***	ΔI_{1X}^{δ}	∆I _{2x} §	$\Delta I_{3X}^{\$}$
43	DBrl	1114			456	285	171	
44	DBr2	1130			458	286	172	
45	DBr3	1210	96	_	459	289	170	
46	DBr4	1241		31	442	277	165	
47	DBr5	1318	108		457	285	172	
48	DBr6	1427			460	284	176	
49	DBr7	1433			464	286	178	
50	TBrl	1308	-		650	285	171	194
51	TBr2	1322			650	286	172	192
52	TBr3	1405	97	-	654	289	170	195
53	TBr4	1436		31	637	277	165	195
54	TBr5	1513	108		652	285	172	195
55	TBr6	1623			656	284	176	196
56	TBr7	1629			660	286	178	196

* Series $1 \rightarrow 3 \rightarrow 5$.

** Effect of replacement of the α -hydrogen atom in series 3 by a methyl group $(3 \rightarrow 4)$.

*** $\Sigma \Delta I_X = I(M_x) - I(A_x); I(D_x) - I(A_x); I(T_x) - I(A_x).$

 $\int \Delta I_{1X} = I(M_x) - I(A_x); \Delta I_{2X} = I(D_x) - I(M_x); \Delta I_{3X} = I(T_x) - I(D_x).$

The enhancements of the retention indices on SE-30, with the values on OV-351 given in parentheses, for the halogen atoms are in the following ranges (Table VI): for the first, second and third chlorine atoms 205–218 (379–427), 73–79 (63–78) and 77–81 (-27 to -37) i.u., respectively, and for the first, second and third bromine atoms 277–289 (472–516), 165–178 (209–234) and 192–196 (-) i.u., respectively. The trends observed between the increments on the non-polar and polar columns are the same as previously reported for branched-chain esters of halogenated acetic acids⁷. Based on the one ester series pair, *i.e.*, 1-methyl-3-butenyl series (4) and 1-methylbutyl series⁷, it seems evident that increments due to halogen substitution would be greater with the unsaturated esters, the deviations, however, being small, *i.e.*, from 2 to 11 i.u. on both columns.

Table V shows that the OV-351/SE-30 retention index ratio is maximal with 2-propyn-1-ol (2) and all its derivatives (series 2) and minimal with *trans*-3-hexen-1-ol (6) and its esters (series 6). The ratio of the absolute retention times, given in Table I, generally shows the same trends, the retention, however, being minimal with 4-penten-2-ol (4) and its esters (11 and 32, *i.e.*, A4 and TCl4).

The difference between the retention indices, $I_{0V-351} - I_{SE-30}$, illustrated in Fig. 7 (Table V), decreases with the seven ester series in the order 2 > 1 > 3 > 5 > 7 > 6 > 4, the sequence with the alcohols being 2 > 1 > 5 > 7 > 3 > 6 > 4 (not included in Fig. 7). The values for series 2 are considerably higher owing to the terminal triple bond and the branched-chain compounds (series 4) show the lowest difference, as expected, owing to the α -methyl substituent, which has a greater effect on the retention on the polar than the non-polar column⁷. As shown, the disparity increases in the order acetate < trichloroacetate < dichloroacetate < monochlo-

ACIDS /	AND INCREN	MENTS OF	RETENT	JON INDIC	ES FOR M	IETHYLE	NE UNITS	S AND HA	MADEN SUBSTIT	UENTS ON OV-351	
Conditio	ns as in Figs. 2	2 and 4.									
Peak No.	Compound	1	AI _{CH2} *	ΔI _{α-CH2} **	24IX***	∂II1x [§]	AI2X [§]	ΔI _{3X} [§]	Iov-351 ^{\$\$}	$I_{OV-351} - I_{SE-30}^{SS}$	
									Ise-30		!
1	1	1097	1						2.06	565	
7	7	1320							2.42	774	
ŝ	ŝ	1149	52	I					1.89	540	
4	4	1120		29					1.75	481	
S	5	1276	127						1.78	559	
9	6	1340							1.65	526	
7	7	1359							1.66	541	
×	A 1	1014	(1 54	356	
		5101							1 01	542	
^ ;	7	C171	;						1.0.1		
10	A 3	1103	68	1					1.47	352	
=	A4	1103		0					1.38	304	
12	A5	1204	101						1.40	343	
13	A 6	1291							1.34	324	
14	Α7	1299							1.34	330	
15	MCII	1429	I		415	415			1.64	559	
16	MC12	1642			427	427			1.86	757	
17	MC13	1504	75	I	401	401			1.55	535	
18	MCI4	1482		-22	379	379			1.48	478	
19	MCI5	1607	103		403	403			1.50	535	
20	MCI6	1686			395	395			1.43	509	
21	MCI7	1701			₫IJĴ	402			1.44	519	

I. O. O. KORHONEN

RETENTION INDICES OF UNSATURATED ALCOHOLS AND CORRESPONDING ESTERS OF ACETIC ACID AND HALOGENATED ACETIC

TABLE V

558 758	8C/	534	471	525	495	503	440	647	424	359	409	384	395	576	773	556	499	554	528	538	628	835	608	543	610	576	589	
1.59	1.79	1.51	1.44	1.46	1.39	1.40	1.43	1.62	1.38	1.31	1.33	1.29	1.29	1.61	1.81	1.53	1.46	1.48	1.42	1.43	1.56	1.74	1.50	1.44	1.46	1.40	1.41	
							-37	- 34	-30	- 32	-35	- 30	-27															
75	8/	72	6 6	65	65	63	75	78	72	6 6	65	65	63								223	234	222	209	228	224	229	
415	427	401	379	403	395	402	415	427	401	379	403	395	402	505	516	493	472	496	488	494	505	516	493	472	496	488	494	
490 505	ŝ	473	445	468	460	465	453	471	443	413	433	430	438	505	516	493	472	496	488	494	728	750	715	681	724	712	723	IV.
		I	- 28						I	- 30						I	-21						I	- 34), see Table
I		72		8			I		6L		16			I		11		104			I		76		110			s on SE-30
1504	1/20	1576	1548	1672	1751	1764	1467	1686	1546	1516	1637	1721	1737	1519	1731	1596	1575	1700	1779	1793	1742	1965	1818	1784	1928	2003	2022	able IV. ention indice
DCII	DCI2	DCI3	DCI4	DCI5	DCI6	DCI7	TCII	TC12	TC13	TCI4	TCIS	TCI6	TCI7	MBrl	MBr2	MBr3	MBr4	MBr5	MBr6	MBr7	DBrl	DBr2	DBr3	DBr4	DBr5	DBr6	DBr7	***.§ As in T §§ For rete
52	57	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	4	41	42	43	4	45	46	47	48	49	*

GLC ANALYSES. XXVI.

TABLE VI

SUMMARY OF RETENTION INCREMENTS OF METHYLENE UNITS AND HALOGEN SUB-STITUENTS FOR THE UNSATURATED ESTERS ON SE-30 AND OV-351

Conditions as in Figs. 1-4.

Increment*	Column	
	SE-30	OV-351
∆I _{CH2}	93-110	72-110
$\Delta I_{\alpha-CH2}$	31-48	0 to -34
ΔI_{1Cl}	205-218	379-42 7
ΔI_{2Cl}	73–79	63-78
ΔI_{3C1}	77-81	-27 to -37
ΔI_{1Br}	277– 289	472-516
∆I _{2Br}	165-178	209-234
ΔI_{3Br}	192-196	_

* As in Table IV.

roacetate < dibromoacetate, the deviations for the alcohols generally being between the monochloro and monobromo isomers (Table V).

The GC retention behaviour of the geometric isomers of chlorinated esters³⁻⁶ and particularly of fatty esters^{16,17} has been extensively studied. Chlorine substitution adjacent to the double bond has a negligible effect on retention on a non-polar column, the *trans*-isomer being eluted first, owing to the lower boiling point. With a polar column the elution order is greatly influenced by molecular structure, owing to the interaction between a chlorine atom and an alkoxy group or between two chlorine atoms³⁻⁵. For this reason, better separations of pairs of isomers are obtained on polar columns.

Isomeric hexenyl esters with a non-halogenated double bond are eluted close together on both polar and non-polar columns, the *trans*-isomer being eluted first and the elution order remains unaltered^{1,6}, as in this present work. The disparity between *trans*- and *cis*-3-hexenyl acetates (13 and 14, *i.e.*, A6 and A7) on non-polar and donor stationary phases varied in the range 0–13 i.u. and on acceptor phases between 7 and 25 i.u.¹. Tables IV and V show the disparities for the series on SE-30 to be 2–6 i.u. and on OV-351 8–19 i.u., the values varying little with the halogen substitution.

CONCLUSIONS

Better separations were obtained on a low-polarity SE-30 than on a highly polar OV-351 capillary column, the latter being in addition unsuitable for tribrominated esters. SE-30 separated all the chlorinated and brominated esters, but the analysis of a complex mixture of all these halogenated esters would lead to several overlapping peaks. Only one compound pair, viz, 13 = A6 and 17 = MCl3, is unresolvable on SE-30. The esters are separated from each other on OV-351, where 17 overlaps with 22 = DCl1, this being the only unresolvable compound in the mixtures analysed.

Fig. 7. Plot showing enhanced retention of the esters on OV-351. $\Delta I = I_{OV-351} - I_{SE-30}$ (Table V). Curves 2-7 as in Fig. 5.

ACKNOWLEDGEMENTS

This work was supported financially by the Foundation for Research on Natural Resources in Finland, the Kalle and Dagmar Välimaa Foundation (Cultural Foundation of Finland) and the Academy of Finland. This aid is gratefully acknowledged.

REFERENCES

- 1 J. R. Ashes and J. K. Haken, J. Chromatogr., 111 (1975) 171, and references cited therein.
- 2 J. K. Haken, J. Chromatogr., 253 (1982) 264.
- 3 1. O. O. Korhonen, J. Chromatogr., 257 (1983) 122.

- 4 J. K. Haken and I. O. O. Korhonen, J. Chromatogr., 268 (1983) 511.
- 5 I. O. O. Korhonen, J. Chromatogr., 285 (1984) 115.
- 6 I. O. O. Korhonen, J. Chromatogr., 270 (1983) 181.
- 7 I. O. O. Korhonen, J. Chromatogr., 288 (1984) 57.
- 8 J. D. Edwards, W. Gerrard and M. F. Lappert, J. Chem. Soc., (1957) 353.
- 9 I. O. O. Korhonen, J. Chromatogr., 287 (1984) 399.
- 10 F. Richter, R. Ostertag, G. Ammerlahn, M. Baumann, E. Behrle and M. Kobel, *Beilsteins Handbuch Der Organischen Chemie*, Vierte Auflage, Drittes Ergänzungswerk, Springer-Verlag, Berlin, Göttingen, Heidelberg, 1958, 1960.
- 11 H.-G. Boit, O. Weissbach, M.-E. Fernholz, B. Langhammer, R. Kayser, L. Mähler, R. Meister, E. Schieber, A. Fahrmeir, F.-H. Flock, F. Giese, G. Jooss, J. Sunkel, E. Bayer, A. Reichard, H. Klute, G. Lange and F. H. Flock, *Beilsteins Handbuch Der Organischen Chemie*, Vierte Auflage, Viertes Ergänzungswerk, Springer-Verlag, Berlin, Heidelberg, New York, 1973, 1974, 1975.
- 12 R. W. Germaine and J. K. Haken, J. Chromatogr., 43 (1969) 33.
- 13 R. W. Germaine and J. K. Haken, J. Chromatogr., 43 (1969) 43.
- 14 I. D. Allen and J. K. Haken, J. Chromatogr., 51 (1970) 415.
- 15 J. R. Ashes and J. K. Haken, J. Chromatogr., 101 (1974) 103.
- 16 F. D. Gunstone, I. A. Ismail and M. Lie Ken Jie, Chem. Phys. Lipids, 1 (1967) 376.
- 17 M. Lie, PhD Thesis, University of St. Andrews, 1968, and references cited therein.